
EvoTank: Optimization of Video Game Artificial Intelligence
Via Evolution

Justin Bishay
May 16, 2020

Abstract

Artificial intelligence (AI) has been a significant part of video games ever since their inception
and continues to have profound importance in games today. These AI systems often require a
large amount of work to properly tune for the gameplay experience. Many hours and people are
needed to not only develop but also test AI in games. EvoTank is a simple 2D tank game
developed to test whether the optimization of a game’s AI can be automated by utilizing a
genetic algorithm to evolve the AI.

1 Introduction

1.1 Artificial Intelligence in Video Games
Artificial intelligence is a crucial component of video games, especially in the modern day. The
creation and fine tuning of AI systems is extremely important in most video games in order to
achieve high levels of immersion and generate quality gameplay experiences. The process of
optimizing such AI systems can be quite arduous and require much guesswork since the best
parameters for an AI created from the ground up for a game that is also created from the ground
up is not immediately known.

Most video games do not make use of advanced machine learning models that can be trained on
player data. While these machine learning models are excellent for teaching AI how to play
games at superhuman levels, they often become nearly unbeatable and lead to a less enjoyable
gameplay experience for players [1]. Thus, it is actually desirable for AI in video games to be
imperfect in terms of its performance.

1.2 Game AI Optimization
Much play testing is needed when designing an AI system in a video game. Developers already
spend a hefty amount of time playing through their games during development to test various
aspects of the game. Some studios even reach out to the public to gather more people to act as
playtesters. A tremendous amount of quantitative and qualitative data is gathered from the play

tests and used by the developers to make adjustments to the components of their game including
its AI. If some parts of this process were to be automated in some way, it could lead to a great
reduction in the time and resources needed to gather the essential data needed to improve the
game. The goal of this paper is to see if an evolutionary approach could be used to automate the
optimization of a game’s AI.

1.3 Related Work
Other studies have been conducted with AI in games. IBM constructed an AI system in 1997 that
managed to win against a grandmaster player in chess. However, research like this is often done
more so with the intention of using a game to perform a benchmark test on the AI [2]. Similar
research has been done with the use of machine learning models such as neural networks to learn
how to play games. One such neural network, MarI/O, uses evolution to construct a neural
network that is capable of learning and playing a 2D mario game [3]. However, MarI/O focuses
on learning the game, whereas this paper is examining the optimization of a more rigidly
constructed AI component in the game.

2 Design

2.1 The Game
The evolutionary optimization will be performed on an AI player in a 2D tank game called
EvoTank. The tank will be placed in an enclosed arena where it will battle against a constant
barrage of enemy tanks for 60 seconds. The AI tank’s score will be recorded either when the tank
loses or when it reaches 60 seconds. The AI tank player will be restricted to moving up, down,
left, or right and will receive 7 points for every 5 seconds it survives and 3 points for each enemy
it defeats.

The enemy tanks will either be stationary tanks that sit in one spot until destroyed, or mobile
tanks that constantly move in a straight line and can exit the arena without being destroyed. The
game will run a live simulation of the battle on 20 AI tanks for each generation. To ensure
consistent results between each of the tanks, the sequence of enemies will be the same across all
tanks and generations.

The parameters of the AI tank are divided into two categories: static parameters and adjustable
parameters. Static parameters are traits that can be adjusted but will remain constant throughout
the evolution. The static parameters are the tank’s reload speed and movement speed. The reason
these two are static parameters is because the optimal setting for these parameters is logically
intuitive; a faster movement speed allows the tank to evade more successfully, and a quicker
reload speed allows the tank to eliminate more enemies in a shorter amount of time. Thus, it is
presumably not worthwhile to adjust them through evolution. Instead, the static parameters will
be considered the natural abilities of the tank that it will have to evolve around.

The adjustable parameters are the traits that will be adjusted via evolution. This includes its
movement behavior, radius to detect danger, target prioritization, and shooting angle. Should the
tank move randomly when not in danger, or should it only move when necessary? How soon
should the tank detect approaching danger; is it possible for the radius to be too far? Should the
tank shoot the closest or furthest enemies first, or is random selection of targets actually better?
When there are moving targets, how far ahead should the tank aim based on the current
movement vector of the target? These are all the questions the evolutionary algorithm aims to
answer for the AI tank.

The adjustable parameters will have the following ranges:

● Movement Behavior
○ 0 (Random) or 1 (Necessary)

● Detection Radius
○ Range of decimals from [1, 4]

● Target Prioritization
○ 0 (Random), 1 (Closest), or 2 (Furthest)

● Shot Angle
○ Range of decimals from [0.25, 3]

2.2 Search Space
The search space is defined as the set of all possible combinations of the adjustable parameters
for the AI tank. The goal is to optimize the performance of the AI to find what the best
combination of parameters is for it. The fitness of each AI tank will be the score it achieves.

2.3 Population Size
Every generation will have 20 individuals in its population. The population will have its
parameters randomized at the start. The population will continue undergoing evolution until it
goes through 10 iterations where no new optimum has been found.

2.3 Selection
Ten individuals will be selected to be parents for reproduction at the end of the generation. This
selection will be done via tournament selection which will compare 2 individuals at a time and
select the one that is more fit. This guarantees that the best member of the population is selected
for reproduction. The 10 parents will form random pairs and will crossbreed 20 children for the
new population. The crossbreeding is simply done by randomly selecting one parent’s parameter
value for the child’s respective parameter. The child’s fitness will be initialized as the average
fitness of its parents.

2.4 Mutation
Following reproduction, each individual in the new population will have a 10% chance of
mutation applied to each of its parameters. If a parameter mutates, it will do so by means of
k-nearest neighbors mutation. This mutation method is done by finding the k members in the
previous generation that have the smallest euclidean distance when compared to the child’s
fitness and parameter undergoing mutation. For example: if a child undergoes mutation for its
detection radius, the euclidean distances for each member of the previous generation are

computed as . The new √(child.f itness elder.f itness) (child.radius elder.radius)− 2 + − 2
value is the mean of the parameter values of the k-nearest neighbors.

The k-nearest neighbors mutation approach has been shown to accelerate the convergence of
genetic algorithms [4]. To ensure that the algorithm does not converge on suboptimal
parameters, only neighbors that have fitness values greater than the child’s will be considered. If
there are fewer than k such neighbors, then the algorithm will take the mean of however many
neighbors with a higher fitness exist. In the case that there are no neighbors with a higher fitness,
the algorithm will select a random value outside of the range of values that were present in the
previous population. If a population’s detection radius values ranged from [1.12, 2.78], for
instance, the new detection radius value would be randomly selected from the range [1, 1.12) and
(2.78, 4]. This is done with the intention of allowing the algorithm to explore parameters that
have not yet been tested and avoid converging on an optimum before thoroughly examining all
possibilities.

The k value that will be used for mutation will be 3. This value was determined after running
multiple tests on the algorithm. A k value of 3 enables the population to consider a wider range
of values when mutating.

3 Results

The game ran for 13 generations and reached a high score of 195 points. The AI’s parameters
converged on a value of 1 (necessary) for movement behavior, a value of about 2.18 for the
detection radius, a value of 1 (closest) for the target prioritization, and a value of about 1.11 for
the shot angle. The AI actually managed to achieve high scores in earlier generations when either
the movement behavior or target prioritization were set to 0 (random). These early high scores
often emerged as outliers as their respective generation’s average was much lower. Though this
does provide interesting insight to how random behavior can lead to desirable results but is
generally less reliable at doing so.

Although the algorithm managed to reach the optimum by the 3rd generation, the average fitness
of the population increased at a much slower rate. The above graph shows how the population
gradually converges on the discovered optimum over time. The worst member of each
population maintained very low fitness throughout most of the evolution. It was not until the
11th generation that its fitness began to sharply improve.

The first two parameters that converged on their optimal value was the detection radius and the
target priority. Both of these parameters started to settle on their eventual optimum around the
4th generation which was about the same time the optimal score was first reached. The average
shot angle and movement behavior continued to fluctuate until the 11th generation. The average
and lowest fitness of each population saw the most amount of improvement between generations
8 and 13 which is when the average shot angle and movement behavior values began to converge
toward their respective optimum. This may suggest that the shot angle and movement behavior
are the more influential parameters on the AI tank’s performance.

The distribution of movement behavior and target priority values in the populations may also
support this claim. There was a fairly even split of random and necessary movement behavior
tanks until the 10th generation where the majority of the population shifted toward necessary
movement. This was coincidentally around the time when the average fitness was experiencing
its greatest increase, and the lowest fitness began its sharp rise in the 11th generation when
almost all of the population had shifted to necessary movement. Conversely, the target priority of
the tanks dramatically shifted toward closest target priority at the 7th generation. At this point of
the evolution, the average fitness was increasing at a slower rate than it did in later generations
and the lowest fitness had seen minimal improvement.

4 Limitations

It is important to note that this test was performed on the same sequence of enemy encounters
every time. This means that the resulting AI is optimized specifically for this setting. It is unclear
how the AI would perform in a foreign or randomized environment with the parameters that
were selected through its evolution. The MarI/O neural network designed to learn and play 2D
mario games encountered a similar problem. The neural network managed to learn how to play
the first level of various 2D Mario games, but it often struggled and failed to complete the
second level of these games [5]. It may be worthwhile to run the evolutionary algorithm for the

AI tank on enemy sequences that are completely randomized every time. Attempting to optimize
the AI tank on random enemy sequences would expose it to more unique scenarios which could
lead to a more well rounded selection of parameters. However, this would need to run for a
longer amount of time to avoid the AI settling on suboptimal parameters.

5 Conclusion

The AI tank player managed to modify itself through evolution to achieve a higher score on a
specific level. Though the true performance of the optimized AI tank would need to be evaluated
across numerous levels, it is very likely that the set of parameters found through evolution will
perform better than randomly selected parameters majority of the time.

The most interesting take away from the study was that the AI tank’s optimized parameters led it
to consistently execute a strategy where it would defeat enemies in a specific order and
ultimately found a spot in the arena where it could sit still without being threatened. This
essentially exposed an exploit in the level where the tank did not need to ever dodge after a
certain point, and any player could use this to their advantage if discovered. Such a tactic could
take countless trials by numerous players to finally be discovered, yet the AI managed to
discover this during evolution and actually optimized itself for it. This reveals another useful
application of optimizing AI systems in games–uncovering design flaws.

Such design flaws are not always easy to find through play testing. The exploit in EvoTank is the
result of eliminating enemies in a specific order that leaves a spot on the right side of the arena
becoming safe from enemy fire around the 20 second mark. Even after that, this spot only
remains safe by continuing to target enemies a certain way. The problem could be resolved by
tweaking the enemy sequence to ensure an enemy is present to fire at the space where the AI
tank player sits still to force it to keep dodging. However, it is likely this will just lead the AI
tank to find a different set of parameters that leads it to another exploitable strategy. Ultimately,
developers will need to examine such outcomes to determine whether or not these occurrences
are acceptable.

References

[1] L. Maass, A. Luc, “Artificial Intelligence in Video Games,” Towards Data Science, July,

2019.
https://towardsdatascience.com/artificial-intelligence-in-video-games-3e2566d59c22

[2] N. Statt, “How Artificial Intelligence Will Revolutionize the Way Video Games are

Developed and Played,” The Verge, March, 2019.
https://www.theverge.com/2019/3/6/18222203/video-game-ai-future-procedural-generati
on-deep-learning

[3] S. Hendrickson, “MarI/O - Machine Learning for Video Games,” June, 2015.

https://www.youtube.com/watch?v=qv6UVOQ0F44&t=48s

[4] G. Liu, C. Wu, “Differential Evolution with k-Nearest-Neighbour-Based Mutation

Operator,” International Journal of Computational Science and Engineering, Vol. 19 No.
4, pp. 538 - 545, 2019. doi: 10.1504/IJCSE.2019.101884

[5] S. Hendrickson, “MarI/O Followup: Super Mario Bros, Donut Plains 4, and Yoshi's

Island 1,” June, 2015. https://www.youtube.com/watch?v=iakFfOmanJU

https://towardsdatascience.com/artificial-intelligence-in-video-games-3e2566d59c22
https://www.theverge.com/2019/3/6/18222203/video-game-ai-future-procedural-generation-deep-learning
https://www.theverge.com/2019/3/6/18222203/video-game-ai-future-procedural-generation-deep-learning
https://www.youtube.com/watch?v=qv6UVOQ0F44&t=48s
http://www.inderscience.com/offer.php?id=101884
https://www.youtube.com/watch?v=iakFfOmanJU

